GATE 2019 NEWS

NATIONAL LEVEL ONLINE TEST

Electrical engineering is a professional engineering discipline that generally deals with the study and application of electricity, electronics, and electromagnetism. This field is definitely one of the reasons for the rapid growth of India’s industry and agriculture. Candidates who appear for **GATE Electrical Engineering** advised to must check the complete syllabus of electrical engineering.

GATE Syllabus | GATE Paper Analysis | GATE Exam Pattern |

The exam stands helpful for students to take admission into the post-graduate course across the country. The exam dates for GATE Electrical Engineering paper is out. **GATE 2019** will be held from **February 02, 03, 09 and 10, 2019**.

- The paper code for Electrical Engineering paper is EE.
- Candidates will be given
**3 hours**to complete the exam. - There will 65 questions asked in the exam worth 100 marks.

GATE Syllabus for Electrical Engineering divided into 10 sections with topics that need to be covered. Candidate can check the Syllabus for GATE Electrical Engineering in detailed as given below:

Topics | Sub Topic |
---|---|

Linear Algebra | Matrix Algebra, Systems of linear equations, Eigenvalues, Eigenvectors |

Calculus | Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes’s theorem, Gauss’s theorem, Green’s theorem |

Differential equations | First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy’s equation, Euler’s equation, Initial and boundary value problems, Partial Differential Equations, Method of separation of variables |

Complex variables | Analytic functions, Cauchy’s integral theorem, Cauchy’s integral formula, Taylor series, Laurent series, Residue theorem, Solution integrals |

Probability and Statistics | Sampling theorems, Conditional probability, Mean, Median, Mode, Standard Deviation, Random variables, Discrete and Continuous distributions, Poisson distribution, Normal distribution, Binomial distribution, Correlation analysis, Regression analysis |

Numerical Methods | Solutions of nonlinear algebraic equations, Single and Multi‐step methods for differential equations |

Transform Theory | Fourier Transform, Laplace Transform, z‐Transform |

**Electrical Engineering**

Network graph, KCL, KVL, Node and Mesh analysis, Transient response of dc and ac networks, Sinusoidal steady-state analysis, Resonance, Passive filters, Ideal current and voltage sources, Thevenin’s theorem, Norton’s theorem, Superposition theorem, Maximum power transfer theorem, Two-port networks, Three phase circuits, Power and power factor in ac circuits.

Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot-Savart’s law, Ampere’s law, Curl, Faraday’s law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations.

Representation of continuous and discrete-time signals, Shifting and scaling operations, Linear Time Invariant and Causal systems, Fourier series representation of continuous periodic signals, Sampling theorem, Applications of Fourier Transform, Laplace Transform and z-Transform.

Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three phase transformers: connections, parallel operation; Auto-transformer, Electromechanical energy conversion principles, DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, starting and speed control of dc motors; Three phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Operating principle of single phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance, regulation and parallel operation of generators, starting of synchronous motor, characteristics; Types of losses and efficiency calculations of electric machines.

Power generation concepts, ac and dc transmission concepts, Models and performance of transmission lines and cables, Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Per-unit quantities, Bus admittance matrix, Gauss Seidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of over-current, differential and distance protection; Circuit breakers, System stability concepts, Equal area criterion.

Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady-state analysis of linear time invariant systems, Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead-Lag compensators; P, PI and PID controllers; State space model, State transition matrix.

Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis.

Characteristics of diodes, BJT, MOSFET; Simple diode circuits: clipping, clamping, rectifiers; Amplifiers: Biasing, Equivalent circuit and Frequency response; Oscillators and Feedback amplifiers; Operational amplifiers: Characteristics and applications; Simple active filters, VCOs and Timers, Combinational and Sequential logic circuits, Multiplexer, Demultiplexer, Schmitt trigger, Sample and hold circuits, A/D and D/A converters, 8085Microprocessor: Architecture, Programming and Interfacing.

Characteristics of semiconductor power devices: Diode, Thyristor, Triac, GTO, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost converters; Single and three phase configuration of uncontrolled rectifiers, Line commutated thyristor based converters, Bidirectional ac to dc voltage source converters, Issues of line current harmonics, Power factor, Distortion factor of ac to dc converters, Single phase and three phase inverters, Sinusoidal pulse modulation.

There are three paper sections, each carrying a different weightage of marks. The below table describes the distribution of marks in each section:

Paper Section | Marks distribution (from total) |

Subject Questions | 70% |

Engineering Mathematics | 15% |

General Aptitude | 15% |

**Also Check GATE Recommended Books**

October 04, 2018GATE 2019### GATE Mathematics Preparation ..

Read the article to check GATE mathematics prepara ...

October 04, 2018GATE 2019### GATE MN: Mining Engineering P ..

Mining Engineering is a domain which deals with sc ...

September 25, 2018GATE 2019### GATE EY: Ecology and Evolutio ..

GATE EY: Ecology and Evolution Preparation Tips

apply now

## Comments

## Comments

No Comments To Show